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FOREWORD

(U) The work reported herein was done at the request of the
Aeronautical Systems Division (ASD), Air Force Systems Command
(AFSC), for the General Dynamics Corporation, Fort Worth, Texas,
under Program Element 6340683F, Program Area 139A.

(U) The results of tests presented were obtained by ARO, Inc.
(a subsidiary of Sverdrup & Parcel and Associates, Inc. ), contract
operator of the Arnold Engineering Development Center (AEDC),
AFSC, Arnold Air Force Station, Tennessee, under Contract
AF40(600)-1200. The test was conducted from August 7 through
September 9, 1967, under ARO Project No. PT0741, and the manu-
script was submitted for publication on October 27, 1867,

(U) This repo#t contains no classified information extracted
from other classified documents.

(U) This technical report has been reviewed and is approved.

L 4
Richard W. Bradley ' Leonard T. Glaser
Lt Colf USAF Colonel, USAF
AF Representative, PWT Director of Test
Directorate of Test
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UNCLASSIFIED ABSTRACT

(U) Test results are presented for a 1/8-scale inlet model of a
proposed AMSA air induction system at transonic and supersonic
Mach numbers. The effects of spike bleed pattern and inlet orienta-
tion are presented. Compressor face total-pressure recovery and
flow distortion data are presented as a function of spike position,
compressor-face mass-flow ratio, spike boundary-layer bleed mass-
flow ratio, angle of attack, angle of sideslip, and free-stream Mach
number,

i Distribution limited to U. S.
| only; Test and Evaluat
requests for thi must be referred

right-Patterson AFB, COhio l
r TAB 73-2, 15 January, 1973.
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SECTION |
INTRODUCTION

AEDC-TR-§7-252

(U) Tests were conducted in the Propulsion Wind Tunnel, Tran-
sonic (16T) and Supersonic (16S) to determine inlet performance
characteristics of a 1/8-scale, partial span model of the Advanced
Manned Strategic Aircraft (AMSA) as proposed by the General
Dynamics Corporation, Fort Worth Division.

#) The objectives of the tests were to evaluate some spike and
cowl design variations and nacelle position effects (spacing and stagger)
from both the isolated inlet and inlet-airplane standpoint.

(#) This report is concerned with the significant test results
obtained for the basic cowl configuration at free-stream Mach numbers
from 0, 85 to 2. 20. The complete test data were forwarded to the test
user and are available at AEDC,

SECTION Il
APPARATUS

2.1 TEST FACILITIES

(U) Tunnel 16T is a closed-circuit, continuous flow wind tunnel
capable of operating at Mach numbers from 0. 55 to 1. 60. The tunnel
can be operated over a stagnation pressure range from approximately
160 to 4000 psfa and over a stagnation temperature range from 80 to
160°F. The tunnel specific humidity is controlled by removing tunnel
air and supplying conditioned makeup air from an atmospheric dryer.
Perforated walls in the test section allow continuous operation through
the Mach number range with a minimum of wall interference.

(U) Tunnel 16S is a closed-circuit, continuous flow wind tunnel
that currently can be operated at Mach numbers from 1. 65 to 3. 10,
The tunnel can be operated over a stagnation pressure range from
approximately 100 to 1800 psfa and over a stagnation temperature
range from 150 to 435°F. The tunnel specific humidity is controlled
by removing tunnel air and supplying conditioned makeup air from an
atmospheric dryer.

{fg‘aﬁw@.
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(U) A more extensive description of each tunnel and its operating
characteristics is contained in the Test Facilities Handbook.l A
dimensioned sketch showing the model location and the sting support
arrangement in both the Tunnel 16T and Tunnel 16S test sections is
presented in Fig. 1 (Appendix I).

2.2 TEST ARTICLE

2.2.1 Wing-Fuselage Configuration

(8) The model is a 1/8-scale general configuration of the basic
AMSA airplane with the variable swept wings in the fully retracted
position. The wing tips, aft of the outboard inlet, cowl lip station,
and horizontal stabilizer were removed to reduce aerodynamic loads
on the wind tunnel model. Dimensioned sketches of the model and the
proposed full-scale AMSA are shown in Figs. 2 and 3, respectively.
Photographs of the model installation in Tunnel 16T and Tunnel 16S
are presented in Fig. 4.

2.2.2 Inlet Configuration

{#} The air induction system for the proposed AMSA, as shown
previously in Fig. 3, consists of four external compression, axisym-
metric double-cone inlets located beneath the wings and attached to
the fuselage in dual-inlet arrangement. Only the dual-inlet arrange-
ment for the left side of the fuselage was installed on the model for
the inlet-airplane phase of testing. During the isolated inlet phase of
testing, a mounting bracket was used to position both a single-inlet
installation and a dual-inlet installation ahead of the sting. For the
dual-inlet installation, separation distances of 0.70, 0.84, and 1.00
inlet diameters were investigated for a nonstaggered arrangement,
and a separation distance of 0. 84 inlet diameters was investigated for
a staggered arrangement. In the staggered arrangement the outboard
inlet was located 3, 5 inlet diameters downstream of the inboard inlet.
Photographs of the isolated single-inlet installation and the isolated
dual-inlet installation in both the nonstaggered and staggered arrange-
ments are shown in Fig. 5.

lTest Facilities Handbook (6th Edition). "Propulsion Wind Tunnel
Facility, Vol. 5." Arnold Engineering Development Center, November
1966. -
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(6 The inlets had 9. 5-deg cowl lip angles and inlet capture areas
of 14. 875 in. 2, They were geometrically similar, both internally and
externally, to full-scale inlets from the cowl lip to the compressor-
face station (nacelle station 14,375). Compressor-face airflow control
was obtained with a variable position plug valve downstream of the
compressor face. A sketch of the model nacelle, including tables of
the cowl internal and external contours, is shown in Fig. 6.

m Five interchangeable double-cone inlet spikes were provided
for each inlet. The spikes had a 15-deg first-cone half angle with
second-cone deflection angles of 10, 15, 20, 24, and 27 deg. They
were remotely translatable and, with the exception of the two spikes
having second-cone deflection angles of 10 and 15 deg, had boundary-
layer bleed holes on the second-cone surface. Spike boundary-layer
bleed pattern variations were accomplished by opening selected rows
of bleed holes that were initially closed with a filling compound prior
to testing. Spike bleed flow was ducted internally through the spike
centerbody and vented overboard. Spike bleed control was obtained
with a variable position plug valve located within the inlet actuator
housing. The two bleed patterns investigated during this test are
shown in Fig. 7. A sketch of the spike, including tables of the spike
contours, is shown in Fig. 8.

2.3 INSTRUMENTATION

(U) Inlet performance in terms of total-pressure recovery and flow
distortion were obtained from compressor-face total-pressure meas-
urements; the orifice locations are shown in Fig. 9, A dynamic trans-
ducer was mounted in the duct wall at the compressor face of each inlet
to monitor inlet stability. Spike boundary-layer bleed and compressor-
face mass flows were measured using calibrated metering plugs in
conjunction with static and total-pressure measurements and free-
stream total temperature measurements.

(U) Linear potentiometers were used to measure spike position,
spike bleed plug position, and compressor-face flow plug position.

SECTION Il
PROCEDURE

3.1 GENERAL

({) The AMSA model was tested in Tunnel 16T at nominal free-
stream Mach numbers of 0.85 and 1.20. Free-stream total tempera-
ture was maintained at 120°F;: and _fr'eeffstre_am total pressure was

3
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maintained at 1560 and 1200 psfa at Mach numbers 0. 85 and 1, 20"
respectively. In Tunnel 16S the model was tested at Mach numbers
from 1.75 to 2. 20. Free-stream total temperature and total pressure
were maintained at 200°F and 1100 psfa, respectively, through the
Mach number range. The model angle of attack and angle of sideslip
were varied from 0 to +14 deg and from -8 to +8 deg, respectively.
The majority of the data taken with the model in a yawed attitude was
taken at a nominal 6. 2-deg angle of attack.

() After tunnel free-stream total pressure and Mach number
were established, the model was positioned to the desired angle of
attack and/or angle of sideslip. Steady-state pressure measurements
were obtained by setting the desired spike position and spike bleed flow
and setting selected compressor-face corrected weight flow by varying
the primary duct plug position. Except when determining the influence
of spike bleed flow rate on inlet performance, the spike bleed flow was
gradually increased until further increases in the spike bleed flow had
no effect on inlet recovery. Inlet stability was determined by monitor-
ing the output of the dynamic pressure transducer mounted near the
compressor face. The initial indication of pressure fluctuation at the
compressor-face station defined the inlet stability limit as presented
in this report.

3.2 ACCURACY OF MEASUREMENTS

(U) The probable errors associated with the various tunnel and
model parameters are listed in Table I (Appendix II). Since the data
presented in this report were obtained from single sample measure-
ments, the errors listed in Table I are the estimated uncertainties of
the data based upon the accuracy of the instrumentation components
and tunnel calibration data,

SECTION IV
RESULTS AND DISCUSSION

($) Inlet performance in terms of compressor-face total-pressure
recovery and flow distortion is presented as a function of spike posi-
tion, compressor-face mass-flow ratio, spike boundary-layer bleed
mass-flow ratio, angle of attack, angle of sideslip, and free-stream
Mach number.

DECLA
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(J) The predicted cruise attitude of the AMSA model, as discussed
in this report, is assumed to be +5 deg angle of attack and 0 deg angle
of sideslip through the Mach number range from 0. 85 to 2.20. The
total-pressure recovery and flow-distortion data presented for the
inlet-airplane phase of testing are those values that were obtained for
nominal compressor-face corrected airflows of 260, 260, 220, 196,
and 180 lbm/sec at Mach numbers of 0.85, 1,20, 1,75, 2.05, and
2. 20, respectively. During the isolated inlet phase of testing, the
majority of data was obtained for a nominal compressor-face corrected
airflow of 180 lby,/sec and at Mach number 2, 06, which was estimated
as the local Mach number in the inlet flow field generated by the wing-
fuselage combination at free-stream Mach number 2, 20,

4.1 ISOLATED INLET TESTS
4.1.1 Spike Bleed Flow

() The effect of spike boundary-layer bleed flow on inlet perform-
ance at Mach number 2.06 is presented in Figs. 10 through 12. {The two
spike bleed patterns investigated (bleed patterns 5 and 6) provided the
same improvement in total-pressure recovery. As shown in Fig. 10,
recovery increased and distortion remained essentially unchanged as
spike bleed flow was increased to the maximum obtainable value. At
the optimum spike position of X/R = 1,63, as determined from Fig. 11,
maximum spike bleed flow increased maximum recovery approximately
1 percent for a nominal corrected airflow of 180 lby,/sec. The data
presented in Fig. 11 also show that spike position at maximum recovery
was less critical with spike bleed flow than without spike bleed flow.

As can be interpreted from Fig. 12, spike bleed flow was more effective
at below-nominal values of corrected airflow. The data also show that
spike bleed flow decreased the inlet stability margin.

(# Subsequent isolated inlet testing was done with spike bleed pat-
tern 6 operating at maximum bleed flow rate. The optimum spike posi-
tion was established as X/R = 1. 63 for a corrected airflow of 180 lby,/sec
at Mach number 2. 086.

4.1.2 Mutual Interference Effects

(#) The mutual interference effects of the nonstaggered dual-inlet
installations are shown in Fig. 13. These data were obtained by setting
a desired performance for one of the inlets and varying the mass flow of
the other inlet. For clarity the inlets.were identified, as they were

5
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commonly referred to when attached to the AMSA model, as eitheg the
inboard inlet or the outboard inlet. For the three inlet spacings investi-
gated the inboard inlet performance was not degraded as the outboard
inlet mass flow was throttled to the stability limit. As the outboard
inlet mass flow was throttled past the stability limit, the inboard inlet
performance bécame slightly sensitive to inlet spacing only when the
inboard inlet was set for a below-nominal corrected airflow of

170 1b,/sec. Flow distortion was unaffected at all test conditions.

(#) The interference effects of staggering the outboard inlet
3.5 inlet diameters downstream of the inboard inlet are shown in
Fig. 14. Varying the outboard mass flow had no effect on inboard in-
let performance; however, varying the inboard mass flow caused out-
board inlet recovery degradation of approximately 2 percent at nominal
corrected airflow and approximately 4.5 percent at a below-nominal
corrected airflow of 165 lby,/sec. Flow distortion was unaffected for
the inboard inlet and was increased slightly for the outboard inlet when
the inboard inlet mass flow was throttled past the stability limit.

(9) The dual-inlet configuration selected as the best compromise
installation for the inlet-airplane phase of testing was the nonstaggered
dual-inlet configuration having the 0. 84-inlet-diameter spacing.

4.2 INLET-AIRPLANE TESTS

4.2.1 Effect of Spike Position

&) The effect of spike position on both the inboard and outboard
inlet performance at Mach numbers from 0. 85 to 2.20 at an angle of
attack of 5 deg is shown in Fig. 15. The data, presented at constant
corrected airflows, were within +2 1b, /sec of the previously defined
nominal corrected airflow for the respective Mach numbers, The data
were used to select the spike positions for optimum inlet performance
at the assumed cruise angle of attack of 5 deg. The effect of second-
cone deflection angle on inlet performance at Mach numbers of 0. 85
and 1. 20 is also shown. Collapsing the second-cone deflection angle
from 15 to 10 deg, at the spike position for optimum inlet perform-
ance, improved recovery approximately 0.3 percent at M, = 0. 85 and
0.6 percent at M, = 1,20. At Mach numbers from 1. 75 to 2. 20 the
spike position for optimum outboard inlet performance was at a
slightly more extended position than that for the inboard inlet. The
discrepancy is believed to be caused by slightly different spike and
cowl contours of the two inlets since the discrepancy also appeared
during the isolated inlet phase of testing.

{ED
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@ Limited data were obtained for determining the effect of spike
bleed flow on inlet performance. At Mach numbers of 0. 85 and 1. 20,.the
spikes contained no perforations to bleed the boundary layer. In general
the spike bleed plugs were fully open at the supersonic Mach number
conditions investigated. However, the effect of spike bleed was investi-
gated at M, = 2. 20 at the assumed cruise angle of attack of 5 deg. The
data presented in Fig. 16 show that recovery was unaffected for spike
bleed flow greater than approximately 2 percent of the inlet capture flow.
Spike bleed mass-flow ratio above 0. 02 increased recovery approximately
2 percent at M = 2. 20 at the cruise angle of attack of 5 deg. .‘

4.2.3 Effects of Angle of Attack and Sideslip

() The effects of angle of attack and sideslip on inlet performance,
for previously defined corrected airflows at optimum spike settings, are
shown in Figs. 17 and 18, respectively., The inboard inlet performance
was more sensitive to model attitude than was the outboard inlet. . At
Mach numbers of 1. 75, 2.05, and 2.20, the maximum recovery anid
minimum distortion occurred at angles of attack greater than the 5-deg
cruise angle of attack. To move the peak recovery points closer to the
9-deg cruise angle of attack, the data indicate that the inlets should be
pitched up to align the inlets to the local flow angularity., As would be
expected at positive angles of sideslip, recovery decreased and distor-
tion increased because the inlets were in the flow field wake generated
by the fuselage.

4.2.4 Optimum Inlet Performance

#) Figure 19 shows a summary of the optimum inboard and out-
board inlet performance for a 5-deg cruise angle of attack over the
Mach number range investigated. Optimum recovery varied from 0. 99
at M, = 0.85 to 0. 88 at M, = 2. 20 while total-pressure distortion
remained at or below 0. 1 through the Mach number range.

(#) Also shown in Fig. 19 is the isolated inlet performance at the
same corrected airflows and spike settings as were determined at the
respective Mach numbers for the inlet-airplane phase of testing. The
increase in performance shown for the inlet-airplane configuration at
Mach numbers greater than 1. 20 results from a decrease in the local
Mach number ahead of the inlets which was generated by the weak
oblique shock system of the wing-fuselage combination, thereby decreas-
ing the total-pressure losses associated with the inlet shock system.

. 7.
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SECTION V
CONCLUSIONS

$

(U) A summary of the significant test results of the wind tunnel
investigation of a 1/8-scale AMSA inlet model in Tunnel 16T and
Tunnel 16S is as follows:

(’) 1-

@ 2.

@ 3.

@ 4.

The nonstaggered, dual-isolated inlet configurations
had no mutual inlet interaction effects at nominal
corrected airflow at free-stream Mach number 2. 06.

The outboard inlet performance was adversely
affected by the inboard inlet performance for the
staggered, dual-isolated inlet configuration at
free-stream Mach number 2. 06,

Inboard inlet performance was more sensitive to
airplane attitude than was the outboard inlet.

Maximum inlet performance did not occur at pre-
dicted airplane cruise attitude for the Mach number
range from 1. 75 to 2, 20.
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TABLE |
ACCURACY OF MEASUREMENTS

Free-stream Mach number, M,
Tunnel 16T
Tunnel 16S

Free-stream total pressure, py , psf
Compressor-face total-pressure recovery, No
Compressor-face total-pressure distortion, D2
Compressor-face mass-flow ratio, mg/m;
Spike bleed mass-flow ratio, mg,/m,

Simulated full-scale corrected weight flow,
W [0/69, lbpy/sec

Model total pressure, psf
Model static pressure, psf

Ratio of distance spike tip extends forward of
cowl lip to cowl radius, X/R

Free-stream total temperature, Ttm, °R
Model angle of attack, o, deg
Model angle of sideslip, 3, deg
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Uncertainty

+0. 006
+0.010

+3. 000
+0. 004
+0.008
+0.010
1+0. 001

12,000
14, 000
+1. 500

10. 003
15, 000
0, 150
+0. 150
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